Abstract

Concurrent engineering approaches for the disciplines of computational fluid dynamics (CFD) and electromagnetics (CEM) are necessary for designing future high-performance aircraft. A characteristic-based finite-volume time-domain (FVTD) computational algorithm, used by CFD and now applied to CEM, is implemented to analyze the radar cross section (RCS) of the ogive and cone-sphere. The technique utilizes a scattered-field formulation of the time-dependent Maxwell equations. The FVTD formulation implements a monotone upstream-centered scheme for conservation laws for the flux evaluation and a Runge-Kutta multi-stage scheme for the time integration. The results are obtained from the electromagnetic fields via a Fourier transform and a near-to-far field transformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.