Abstract

A consensus sequence has been derived for vertebrate topoisomerase II cleavage of DNA (Spitzner, J. R. and Muller, M. T. (1988) Nucleic Acid. Res. 16, 5533-5556). An independent sample of 65 topoisomerase II sites (obtained in the absence of topoisomerase II inhibitors) was analyzed and found to match the consensus sequence as well as enzyme sites determined in the presence of the anti-tumor drug 4'-(9-acridinyl-amino)-methanesulfon-m-anisidide (m-AMSA). As originally described, conventional application of the consensus sequence afforded accuracy in the prediction of the locations but not the frequencies of topoisomerase II cleavages. In the present report, we describe a new method which quantitatively discriminates sites from nonsites, called the 'matrix mean' method (the mean match of a site to the matrix of base proportions from the original consensus sequence derivation). Furthermore, we derived a second method, called the 'unique score' model, which predicts frequency of topoisomerase II activity at a cleavage site. In the unique score method both DNA strands of a site are examined to determine the total number of the consensus positions that match on at least one strand of a potential site. From the new data base of 65 topoisomerase II sites, cleavages were scored for relative cleavage strength. Linear regression analysis showed a significant (p less than 0.01) correlation between the unique score and cleavage strength. The study was extended to show that the unique score model accurately and quantitatively predicts topoisomerase II sites either in the absence or presence of m-AMSA using the same consensus sequence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call