Abstract
Geotechnical boundary value problems involving large deformations are often difficult to solve using the classical finite element method. Large mesh distortions and contact problems can occur due to the large deformations such that a convergent solution cannot be achieved. Since Abaqus, Version 6.8, a new Coupled Eulerian–Lagrangian (CEL) approach has been developed to overcome the difficulties with regard to finite element method and large deformation analyses. This new method is investigated regarding its capabilities. First, a benchmark test, a strip footing problem is investigated and compared to analytical solutions and results of comparable finite element analyses. This benchmark test shows that CEL is well suited to deal with problems which cannot be fully solved using FEM. In further applications the CEL approach is applied to more complex geotechnical boundary value problems. First, the installation of a pile into subsoil is simulated. The pile is jacked into the ground and the results received from these analyses are compared to results of classical finite element simulations. A second case study is the simulation of a ship running aground at an embankment. The results of the CEL simulation are compared to in situ measurement data. Finally, the capabilities of the new CEL approach are evaluated regarding its robustness and efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.