Abstract

Metal stress was induced in maize (Zea mays L.) by the addition to the soil of a range of concentrations of either ethylene-diamine-tetra-acetate (EDTA) or citric acid (CA) as chelating agents. Measurements were taken using a recently-developed sensor capable of plant fluorescence detection at wavelengths of 762 and 688 nm. Atmospheric oxygen absorbs radiation at these wavelengths. As such, measured fluorescence can be attributed to the plants under observation. Red/far-red (690/760 nm, R/FR) chlorophyll (Chl) fluorescence ratios were measured before addition of the chelating agents and during the month following. Significant differences were seen in the fluorescence responses of those plants for which high concentrations [≥ 30 mmol kg−1(d.m. soil)] of EDTA were added to the pots compared to those for which CA or no chelating agent was added. The plants for which high concentrations of EDTA were added also exhibited higher tissue metal concentrations and demonstrated visible signs of stress. Before signs of visual stress became apparent, R/FR Chl fluorescence ratios for metal-stressed plants were significantly different to those observed for unstressed plants. These results support the use of plant fluorescence as a potential tool for early indication of phytotoxic metal stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call