Abstract

A continuous fixed-bed study was carried out utilising a breakthrough biosorbent, specifically multi-metal binding biosorbent (MMBB) for removing cadmium, copper, lead and zinc. The effect of operating conditions, i.e. influent flow rate, metal concentration and bed depth was investigated at pH 5.5±0.1 for a synthetic wastewater sample. Results confirmed that the total amount of metal adsorption declined with increasing influent flow rate and also rose when each metal concentration also increased. The maximum biosorption capacities of 38.25, 63.37, 108.12 and 35.23mg/g for Cd, Cu, Pb and Zn, respectively, were achieved at 31cm bed height, 10mL/min flow rate and 20mg/L initial concentration. The Thomas model better described the whole dynamic behaviour of the column rather than the Dose Response and Yoon–Nelson models. Finally, desorption studies indicated that metal-loaded biosorbent could be used after three consecutive sorption, desorption and regeneration cycles by applying a semi-simulated real wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.