Abstract

The “jerky” motion of a twin boundary in the ferromagnetic shape memory alloy NiMnGa is studied experimentally and theoretically. We employ a bi-stable chain model in order to interpret macroscopic stress-strain experiments and extract important micro-level properties. The analysis reveals the existence of a periodic barrier for type I twin boundary motion with an average distance of 19 μm and amplitude of 0.16 J/m2. Further, we show that the macroscopic mechanical response depends on the length of the crystal and predict a significant decrease of the hysteresis in sub-mm length specimens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call