Abstract

This paper describes the preparation and application of a chimeric DNA/RNA oligonucleotide that contains a single 5′-bridging phosphorothioate linkage adjacent to a ribonucleotide and embedded in an otherwise all-DNA sequence. The influence of pH, divalent metal cation, hybridization, and secondary structure on the susceptibility of the thio linkage towards transesterification is investigated in an effort to better understand the metal-phosphorothioate interactions and the basis for catalysis. In addition to the chemical cleavage, we have examined the hammerhead ribozyme mediated cleavage of the 5′-bridging phosphorothioate linkage specifically to test the hypothesis that the ribozyme employs a second metal cofactor, which functions as a Lewis acid, to catalyze transesterification. The results of our kinetics experiments do not support this double-metal model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.