Abstract

Three-dimensional geological modeling of reservoirs is an essential tool to predict reservoir performance and improve the understanding of reservoir uniqueness in Es1 formation. The paper focuses on the use of petrel software to build three-dimensional reservoir geological model which characterizes and assesses block Nv32 that located in the west of the Shenvsi oilfield in the south of Cangzhou city, Hebei province of China, and has an oil-bearing area of 1.4 km2. This study is depending on integration data from well logs of 22 wells which provided from geology, geophysics, and petrophysics to identify and provide precise depict of the subsurface internal structure and the reservoir heterogeneity. Input data was used to build the structural model, sedimentary facies model, petrophysical properties (porosity, permeability, saturation, and N/G model, and finally to determine the reservoir volume. The lithological facies were simulated using the assigned value method. Moreover, Petrophysical properties (Porosity, permeability, oil saturation and net to gross) were constructed for each zone using the Sequential Gaussian Simulation method to guide the distribution of petrophysical properties of Es1 formation, block Nv32. Statistical analysis of the porosity, permeability, oil saturation and N/G model present that the porosity occurrence distribution is mainly concern between 0.2% - 36.39% of block Nv32 with an average porosity value of 17.5%, permeability between 0.017 mD to 974.8 mD, having an average permeability of 59.44 mD, oil saturation between 0.00 to 0.95 having an average value of 0.22, and N/G is mainly concentrated between 0.01 to 1.00 within an average value of 0.61. This research has indicated the reliability of the three-dimensional model technique as a suitable tool to provide a sufficient understanding of petrophysical distribution. The south-western and north-western indicate that oilfield is very promising an exploratory well should be drilled to find out the thickness and size of the reservoir.

Highlights

  • When the oil has been discovered in a field, many studies will be required to evaluate and comprehend the reservoir heterogeneity, define the extent of the reservoir in the three-dimensional, evaluating the fluid volumetric in the reservoir and identify the suitable method to increase the reservoir fluid recovery

  • Each unit in Es1 formation, block Nv32 had been divided into many layers based on the lithological, Petrophysical properties.Es1 × 1 and Es1 × 2 consist of 11 layers, Es1 × 3 and Es1 × 4 consist of 10layers which based on the petrophysical properties

  • The porosity model of Es1 formation was built based on the outcome result that has been determined from porosity which was obtained from the petrophysical interpretation of block Nv32 wells

Read more

Summary

Introduction

When the oil has been discovered in a field, many studies will be required to evaluate and comprehend the reservoir heterogeneity, define the extent of the reservoir in the three-dimensional, evaluating the fluid volumetric in the reservoir and identify the suitable method to increase the reservoir fluid recovery. Reservoir characteristics such as lithofacies heterogeneities, porosity, and permeability spatial variation control the reservoir performance, and development plans [1]. This research aims to characterize and carry out 3D static modeling of Es1 formation, block Nv32 to make economic management decisions aimed towards the profitability of an oil company by reducing the capital investment by providing encouragement and confidence to the oil investment with the following objectives: Correlate the reservoir across the 22 wells, delineate the hydrocarbon bearing reservoir map out major faults within the field, compute the petrophysical parameters such as porosity, permeability net-to-gross ratio and saturation using the deterministic approach

Study Area
Model Workflow
Data Preparation
Well Correlation
Structural Modeling
Fault Model
The Layering of Geological Model
Facies Modeling
Porosity Model
Permeability Model
Oil Saturation Model
Net to Gross Model
Reservoir Volumetric
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call