Abstract
ABSTRACTHierarchically porous silica monoliths were introduced into liquid phase chromatography at the beginning of the last decade. The high surface area, high void volume and bicontinuous nature of the porosity of the materials are significant advantages over existing chromatographic supports and have resulted in rapid acceptance of these materials into the chromatography market.We report here on the synthesis of 3-D porous silver, cobalt oxide and zinc oxide monoliths, their materials characterization, fabrication as liquid chromatographic columns and initial chromatographic characterization. The, as prepared, columns gave very low back pressure, consistent with the bicontinuous nature of the columns. Cobalt oxide and zinc oxide both demonstrated retention of a number of nitrogen heterocycles, providing the basis for molecular separation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.