Abstract
The aim of this study was to develop a three-dimensional (3D) cell model in order to evaluate the effectiveness of a traditional Chinese medicine decoction in the treatment of arthritis. Chondrocytes (ATDC5) and osteoblasts (MC3T3-E1) were 3D printed separately using methacryloyl gelatin (GelMA) hydrogel bioinks to mimic the natural 3D cell environment. Both cell types showed good biocompatibility in GelMA. Lipopolysaccharide (LPS) was added to the cell models to create inflammation models, which resulted in increased expression of inflammatory factors IL-1β, TNF-α, iNOS, and IL-6, and decreased expression of cell functional genes such as Collagen II (COLII), transcription factor SOX-9 (Sox9), Aggrecan, alkaline phosphatase (ALP), RUNX family transcription factor 2 (Runx2), Collagen I (COLI), Osteopontin (OPN), and bone morphogenetic protein-2 (BMP-2). The created inflammation model was then used to evaluate the effectiveness of Dangguiniantongtang (DGNT) decoctions. The results showed that DGNT reduced the expression of inflammatory factors and increased the expression of functional genes in the cell model. In summary, this study established a 3D cell model to assess the effectiveness of traditional Chinese medicine (TCM) decoctions, characterized the gene expression profile of the inflammatory state model, and provided a practical reference for future research on TCM efficacy evaluation for arthritis treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.