Abstract

BackgroundThe major greenhouse gas from ruminants is enteric methane (CH4) which in 2010, was estimated at 2.1 Gt of CO2 equivalent, accounting for 4.3% of global anthropogenic greenhouse gas emissions. There are extensive efforts being made around the world to develop CH4 mitigating inhibitors that specifically target rumen methanogens with the ultimate goal of reducing the environmental footprint of ruminant livestock production. This study examined the individual and combined effects of supplementing a high-forage diet (90% barley silage) fed to beef cattle with the investigational CH4 inhibitor 3-nitrooxypropanol (3-NOP) and canola oil (OIL) on the rumen microbial community in relation to enteric CH4 emissions and ruminal fermentation.Results3-NOP and OIL individually reduced enteric CH4 yield (g/kg dry matter intake) by 28.2% and 24.0%, respectively, and the effects were additive when used in combination (51.3% reduction). 3-NOP increased H2 emissions 37-fold, while co-administering 3-NOP and OIL increased H2 in the rumen 20-fold relative to the control diet. The inclusion of 3-NOP or OIL significantly reduced the diversity of the rumen microbiome. 3-NOP resulted in targeted changes in the microbiome decreasing the relative abundance of Methanobrevibacter and increasing the relative abundance of Bacteroidetes. The inclusion of OIL resulted in substantial changes to the microbial community that were associated with changes in ruminal volatile fatty acid concentration and gas production. OIL significantly reduced the abundance of protozoa and fiber-degrading microbes in the rumen but it did not selectively alter the abundance of rumen methanogens.ConclusionsOur data provide a mechanistic understanding of CH4 inhibition by 3-NOP and OIL when offered alone and in combination to cattle fed a high forage diet. 3-NOP specifically targeted rumen methanogens and partly inhibited the hydrogenotrophic methanogenesis pathway, which increased H2 emissions and propionate molar proportion in rumen fluid. In contrast, OIL caused substantial changes in the rumen microbial community by indiscriminately altering the abundance of a range of rumen microbes, reducing the abundance of fibrolytic bacteria and protozoa, resulting in altered rumen fermentation. Importantly, our data suggest that co-administering CH4 inhibitors with distinct mechanisms of action can both enhance CH4 inhibition and provide alternative sinks to prevent excessive accumulation of ruminal H2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.