Abstract

Thiazolidine ring-opening reaction is one of the key steps in protein chemical synthesis via sequential native chemical ligation strategy. We recently developed a novel thiazolidine ring-opening reaction with 2,2'-dipyridyl disulfide (DPDS). In order to investigate the applicability of this reaction to glycoprotein synthesis, we synthesized evasin-3, a cysteine-rich glycoprotein with chemokine-binding ability originally found in tick saliva. The sequence of evasin-3 was divided into three segments, and these segments were separately synthesized with the ordinary solid-phase peptide synthesis method. After the first ligation of middle and C-terminal segments, thiazolidine used as a protecting group of Cys residue at the N-terminus of the middle segment was converted to Cys with DPDS. In this thiazolidine ring-opening reaction, DPDS treatment did not affect the N-linked glycan moiety. After the second ligation with the N-terminal segment and the refolding reaction, evasin-3 could be obtained in good yield. The synthetic evasin-3 showed the binding ability specifically to CXCL chemokines. These results clearly indicate that this DPDS method is useful for glycoprotein synthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.