Abstract

Penguin colonies in Antarctica offer an ideal “natural laboratory” to investigate ecosystem function and the nitrogen (N) cycle. This study assessed the spatial distribution of penguin-derived N from guano and quantitatively assessed its impact on plant N utilization strategies in Victoria Land, Ross Sea region, Antarctica. Soil, moss, and aquatic microbial mats were collected inside and outside an active Adélie penguin (Pygoscelis adeliae) colony and analyzed for δ15N of total and inorganic nitrogen (NH4+-N and NO3−-N). The soil total nitrogen (TN), NH4+-N, and NO3−-N concentrations, as well as their δ15N values were significantly higher in guano-impacted areas than those in guano-free areas, verifying that guano is an important N source at and near penguin colonies. However, even far from the penguin colonies, soil δ15N values resembled those in penguin colonies, suggesting strong spatial impacts of penguin-derived N. The moss impacted by guano was more enriched in δ15N than in guano-free areas. The δ15N values of NH4+-N and NO3−-N in soils covered with moss revealed that the moss might prefer inorganic N in the absence of guano, while the dissolved organic N would become an important source for moss growing on ornithogenic soils. Aquatic microbial mat samples near penguin colonies were 15N-enriched, but 15N-depleted at upland sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call