Abstract
A study was conducted to test the capability of the (14)N nuclear quadrupole resonance (NQR) method to discriminate qualitatively and quantitatively among different forms of piroxicam. Samples of commercial piroxicam form I and its monohydrate were obtained on the local market. Additionally, samples of form I and II were prepared by recrystallization in 1,2-dichloroethane and ethanol, respectively. DSC and FT-IR were employed as reference methods. A (14)N NQR spectrometer was used to measure samples of different forms and mixtures of piroxicam at 2587 and 3439 kHz. DSC and FT-IR clearly confirmed differences between the different piroxicam forms. Measurements of (14)N NQR signals of different forms of piroxicam at 2587 kHz detected only spectral peaks of form I. The dependence of (14)N NQR signal intensity on the concentration of form I in mixtures with the monohydrate showed a clear linear relationship at both measured frequencies, though the scattering of data was greater at 3439 kHz due to the lower S/N ratio. The (14)N NQR method has the potential to become an additional and important spectroscopic tool in the study of solid-state forms, not only of pure active pharmaceutical ingredients or excipients, but also of their mixtures. This ability lends the method to a possible successful utilization at different levels of pharmaceutical manufacturing and product quality control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.