Abstract

Deep Neutral Networks (DNNs) have been widely used in many applications, such as self-driving cars, natural language processing (NLP), image classification, visual object recognition, and so on. Field-programmable gate array (FPGA) based Multiprocessor System on a Chip (MPSoC) is recently considered one of the popular choices for deploying DNN models. However, the limited resource capacity of MPSoC imposes a challenge for such practical implementation. Recent studies revealed the trade-off between the “resources consumed" vs. the “performance achieved". Taking a cue from these findings, we address the problem of efficient implementation of deep learning into the resource-constrained MPSoC in this paper, where each deep learning network is run with different service levels based on resource usage (where a higher service level implies higher performance with increased resource consumption). To this end, we propose a heuristic-based strategy, Application Wise Level Selector (AWLS), for selecting service levels to maximize the overall performance subject to a given resource bound. AWLS can achieve higher performance within a constrained resource budget under various simulation scenarios. Further, we verify the proposed strategy using an AMD-Xilinx Zynq UltraScale+ XCZU9EG SoC. Using a framework designed to deploy multi-DNN on multi-DPUs (Deep Learning Units), it is proved that an optimal solution is achieved from the algorithm, which obtains the highest performance (Frames Per Second) using the same resource budget.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.