Abstract

Utilizing environmentally-friendly bacterial cellulose as a scaffold, a highly porous, layered OA-BC catalyst was synthesized through an enhanced sol-gel process. This catalyst demonstrated exceptional performance in the oxidation of toluene, outperforming conventional alternatives that utilize chemical porogens. The OA-BC catalyst efficiently degrades toluene at 220℃ with high stability and hydrophobicity, indicating resistance to deactivation. Its superior activity is due to increased oxygen vacancies, enhanced metal oxide cooperation, and a layered porous structure, which together enhance active oxygen species and oxygen diffusion. Calcination of the OA-BC catalyst results in molecular cleavage and formation of small aggregates, increasing hydroxyl groups that stabilize Cu and Ce centers, enhancing toluene-oxygen reactions. In-situ infrared and X-ray photoelectron spectroscopy confirm stable monodentate Cu+ ligands, contributing to its high catalytic activity. This study introduces a novel approach by employing bacterial cellulose as a template for synthesizing a porous stratified OA-BC catalyst, demonstrating superior performance in toluene oxidation. The efficacy of catalyst results from a tripartite synergy involving the stratified porous architecture, the stabilizing effect of Cu+-coordinating ligands and hydroxyl groups, and the interplay of hydroxyl electron donors and acceptors, shedding light on environmentally benign catalyst development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call