Abstract
Energy-fidelity trade-offs are central to the performance of many technologies, but they are essential in wireless body area sensor networks (BASNs) due to severe energy and processing constraints and the critical nature of certain healthcare applications. On-node signal processing and compression techniques can save energy by greatly reducing the amount of data transmitted over the wireless channel, but lossy techniques, capable of high compression ratios, can incur a reduction in application fidelity. In order to maximize system performance, these trade-offs must be considered at runtime due to the dynamic nature of BASN applications, including sensed data, operating environments, user actuation, etc. BASNs therefore require energy-fidelity scalability, so automated and user-initiated trade-offs can be made dynamically. This article presents a data rate scalability framework within a motion-based health application context which demonstrates the design of efficient and efficacious wireless health systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.