Abstract

Aluminum alloys are among the most promising materials for manufacture of drill pipes for deepwater and ultra-deepwater drilling in corrosive environment. Aluminum drill pipes are made with steel tool-joints to increase the number of connection makings-and-breakings. One of the major concerns of aluminum drill pipe operation in deepwater complex profile wells is the fatigue of their connection. This paper presents the results of study of fatigue properties of aluminum alloy 1953T1 Light Alloy Drill Pipes of Improved Dependability (LAIDP) 147×13 mm that are most extensively used in Russia. During assembly, the pin and box of steel tool-joint are heated and screwed on the tubular ends. After cooling, this assembly provides a reliable permanent connection. The study includes experimental determination of the S-N curve of small-scale specimens of aluminum tubular, FEA of the connection with the SCF determined and fatigue testing of the full-scale LAIDP connection. FEA is based on 3D model. The material properties of tubular are modeled as elastic-plastic. The distribution of hot-assembly stresses is considered in detail. Alternating bending load is applied by several semi-cycles. The results of analysis of Stress Concentration Factor (SCF) at various axial loads, bending moment ranges, friction factors of contact surfaces and interference of connection are given. Full-scale fatigue testing of connection specimen is carried out to verify the results of analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call