Abstract

Conventional approaches to diagnosing common eye diseases using B-mode ultrasonography are labor-intensive and time-consuming, must requiring expert intervention for accuracy. This study aims to address these challenges by proposing an intelligence-assisted analysis five-classification model for diagnosing common eye diseases using B-mode ultrasound images. This research utilizes 2064 B-mode ultrasound images of the eye to train a novel model integrating artificial intelligence technology. The ConvNeXt-L model achieved outstanding performance with an accuracy rate of 84.3% and a Kappa value of 80.3%. Across five classifications (no obvious abnormality, vitreous opacity, posterior vitreous detachment, retinal detachment, and choroidal detachment), the model demonstrated sensitivity values of 93.2%, 67.6%, 86.1%, 89.4%, and 81.4%, respectively, and specificity values ranging from 94.6% to 98.1%. F1 scores ranged from 71% to 92%, while AUC values ranged from 89.7% to 97.8%. Among various models compared, the ConvNeXt-L model exhibited superior performance. It effectively categorizes and visualizes pathological changes, providing essential assisted information for ophthalmologists and enhancing diagnostic accuracy and efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.