Abstract

The Calabria (Southern Italy) region is characterized by many geological haz- ards among which landslides, due to the geological, geomorphological, and climatic characteristics, constitute one of the major cause of significant and widespread damage. The present work aims to exploit a bivariate statistics-based approach for drafting a landslide susceptibility map in a specific scenario of the region (the Vitravo River catchment) to provide a useful and easy tool for future land planning. Landslides have been detected through air-photo interpretation and field surveys, by identifying both the landslide detachment zones (LDZ) and landslide bodies; a geospatial database of predisposing factors has been constructed using the ESRI ArcView 3.2 GIS. The landslide susceptibility has been assessed by computing the weighting values (Wi) for each class of the predisposing factors (lithology, proximity to fault and drainage line, land use, slope angle, aspect, plan curvature), thus evaluating the distribution of the landslide detachment zones within each class. The extracted predisposing factors maps have then been re-classified on the basis of the calculated weighting values (Wi) and by means of overlay processes. Finally, the landslide susceptibility map has been considered by five classes. It has been determined that a high percentage (61%) of the study area is characterized by a high to very high degree of susceptibility; clay and marly lithologies, and slope exceeding 20 in inclination would be much prone to landsliding. Furthermore, in order to ascertain the proposed landslide sus- ceptibility estimate, a validation procedure has been carried out, by splitting the landslide detachment zones into two groups: a training and a validation set. By means of the training set, the susceptibility map has first been produced; then, it has been compared with the

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.