Abstract

This work aims to strengthen the comprehensive performance of the Luenberger observer in the application of aviation three-phase converter and in physical exercise wearable devices to effectively detect human physiological signals. Firstly, the use status and characteristics of three-phase converters are discussed. Then, the Luenberger observer and its optimization process are described. Finally, the Luenberger observer is optimized through phase-locked loop technology and the vector control method. The experimental results indicate that the PLL of the steady-state linear Kalman filter is applicable to the multielectric aircraft converter for the aviation variable frequency power supply. The phase-locked loop of the steady-state linear Kalman filter is complicated, and the output angular frequency is inconsistent with the angular frequency of the actual voltage of the aircraft variable-frequency power supply. Consequently, it does not have the function of frequency locking. On the contrary, the Luenberger observer phase-locked loop designed here is suitable for the multielectric aircraft converter for the aircraft variable-frequency power supply. In addition, it is simpler than the steady-state linear Kalman filter phase-locked loop and realizes the frequency-locking function. In addition, the vector control method significantly improves the control performance of the Luenberger observer. The control error of the original observer is about 0.24°, and the control error of the optimized observer is about 0.18°. This work provides technical support for the performance optimization of the Luenberger observer and contributes to the performance improvement of the aviation three-phase converter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call