Abstract
Hazardous gas release can pose severe hazards to the ecological environment and public safety. The source-term estimation of hazardous gas leakage serves a crucial role in emergency response and safety management practices. Nevertheless, the precision of a forward diffusion model and atmospheric diffusion conditions have a significant impact on the performance of the method for estimating source terms. This work proposes the particle swarm optimization (PSO) algorithm coupled with the Gaussian dispersion model for estimating leakage source parameters. The method is validated using experimental cases of the prairie grass field dispersion experiment with various atmospheric stability classes. The results prove the effectiveness of this method. The effects of atmospheric diffusion conditions on estimation outcomes are also investigated. The estimated effect in extreme atmospheric diffusion conditions is not as good as in other diffusion conditions. Accordingly, the Gaussian dispersion model is improved by adding linear and polynomial correction coefficients to it for its inapplicability under extreme diffusion conditions. Finally, the PSO method coupled with improved models is adapted for the source-term parameter estimation. The findings demonstrate that the estimation performance of the PSO method coupled with improved models is significantly improved. It was also found that estimated performances of source parameters of two correction models were significantly distinct under various atmospheric stability classes. There is no single optimal model; however, the model can be selected according to practical diffusion conditions to enhance the estimated precision of source-term parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.