Abstract

Increased consumption of vegetables has been recommended worldwide as a part of a healthy diet; therefore, determining gene function among breeding materials is crucial for vegetable improvement to meet the sustainable development of new vegetable varieties. However, genetic transformation is time-consuming and laborious, which limits the exploration of gene function for various vegetable crops. Virus-Induced Gene Silencing (VIGS) can perform large-scale and rapid gene silencing in plants due to a reduction in the experimental period and its independence from the stable genetic transformation, providing an excellent opportunity for functional research. VIGS can accelerate model plant research and make it easier to analyze gene function and validation in vegetable crops. Moreover, with the advent of technologies such as virus-mediated heterologous protein expression and the development of CRISPR/Cas9 technology, virus-mediated genetic tools have ushered in a new era in genetics and crop improvement. This study summarizes recent achievements in VIGS and Virus-Induced Gene Editing (VIGE) in vegetables. We also identify several challenges in the current state of VIGS technology in vegetables, serving as a guide for future research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.