Abstract
AbstractResearch on articulating the design space in computational generative systems is ongoing, to overcome the issue of possible overwhelming multiplicity and redundancy of emerging design options. The article contributes to this line of research of design space articulation, in order to facilitate designers’ successful exploration in computational design. We have recently developed a method for shape clustering using K-Medoids, a machine learning-based strategy. The method performs clustering of similar design shapes and retrieves a representative shape for each cluster in 2D grid-based representation. In this paper, we present a progress in our project where the method has been applied to a new test case, and empirically verified using clustering evaluation methods. Our clustering evaluation results show comparable accuracy when assessed against an external study and provide insight into the evaluation criteria for machine learning methods, as presented in the paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.