Abstract

Based on the combination of FLAC3D software and strength reduction method, the applicability of three kinds of instability criterion of the stability of dip slopes with interbeddings of weak and hard rocks is studied. Then the failure process, failure mode and stability of the slopes are analyzed. The results show that: (1) the maximum unbalance rate affects the final calculated results; there is no certain relation between the convergence of calculation and the slope stability. The convergence of the displacement curves of key points and the ultimate displacement values should also be concerned to determine the slope stability. The maximum unbalance rate and the amplitude of the reduction affect the determination of the characteristic point in the displacement curve. It is difficult to quantitatively evaluate the shear strain rate when judging the slope stability, the judgment is not convenient and the error is large. Combining with calculation convergence criterion and feature point displacement mutation criterion is helpful to improve the accuracy of judgment on the limit state of the slope. (2) Slope deformation and failure process can be roughly divided into four stages qualitatively; the rock mass has buckling failure can be divided into three stages according to the deformation characteristics. The potential shear export of slope with buckling failure locates above the slope toe. Different combinations of weak and strong rock thickness does not affect the failure mode of slope, which all bellows to buckling failure mode, but it will affect the slope stability coefficient; with the increase of the thickness of strong rock and weak rock, the stability coefficient increases. If the thickness of the strong rock increases, the stability coefficient increases as well when the thickness ratio is constant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.