Abstract

AbstractThawing and freezing of Arctic soils is affected by many factors, with air temperature, vegetation, snow accumulation, and soil physical properties and soil moisture among the most important. We enhance the Geophysical Institute Permafrost Laboratory model and develop several high spatial resolution scenarios of changes in permafrost characteristics in the Alaskan Arctic in response to observed and projected climate change. The ground thermal properties of surface vegetation and soil column are upscaled using the Ecosystems of Northern Alaska map and temperature data assimilation from the shallow boreholes across the Alaska North Slope. Soil temperature dynamics are simulated by solving the 1‐D nonlinear heat equation with phase change, while the snow temperature and thickness are simulated by considering the snow accumulation, compaction, and melting processes. The model is verified by comparing with available active layer thickness at the Circumpolar Active Layer Monitoring sites, permafrost temperature, and snow depth records from existing permafrost observatories in the North Slope region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.