Abstract

The pin-by-pin fine-mesh core calculation method is considered as a candidate next-generation core calculation method for BWR. In this study, the diffusion and simplified P3 (SP3) theories are applied to the BWR pin-by-pin fine-mesh calculation. The performances of the diffusion and SP3 theories for cell-homogeneous pin-by-pin fine-mesh calculation for BWR are evaluated through comparison with a cell-heterogeneous detailed transport calculation by the method of characteristics (MOC). Two-dimensional, 2 × 2 multi-assemblies geometry is used to compare the prediction accuracies of the diffusion and SP3 theories. The 2 × 2 multi-assemblies geometry consists of 9 × 9 UO2 fuel assemblies that have two different enrichment splittings. To minimize the cell-homogenization error, the SPH method is applied for the pin-by-pin fine-mesh calculation. The SPH method is a technique that reproduces a result of heterogeneous calculation using that of homogeneous calculation. The calculation results indicated that the diff...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.