Abstract

Knowledge of the equation of state of adsorbed or deposited layers of proteins at the air/water interface is of fundamental interest in the understanding of the surface activity of these molecules. Using scaling laws of current polymer theories, it has been shown that the equation of state of the interfacial layer in the semi-dilute regime should relate the surface pressure to the surface concentration through a power law. The exponent of this power law should reflect the quality of the solvent and the conformation of the adsorbed polypeptide chain. In the case of β-lactoglobulin layers, in the range of surface concentrations that should correspond to the semi-dilute regime, the relationship between surface pressure and surface concentration is expressed as a power law. The exponent of this power law is strongly influenced by the nature of the aqueous substrate and by the net charge of the protein molecule. The use of scaling laws gives a coherent view of the expansion of the polypeptide chain in the interfacial layer and of the relationship between surface concentration and surface pressure in the semi-dilute regime. This result favours a strong similarity between β-lactoglobulin and a polymer chain in the interfacial layer. It is concluded that current theories of polymer adsorption could be applied to interfacial protein layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.