Abstract

The construction and performance of the parallel plate avalanche counters (PPACs) using a spontaneous fission source 252 Cf is described in this paper. The parallel plate circular electrodes are made of aluminum foils having a thickness less than ten microns. After fabrication, the detectors and the source are mounted inside a reaction chamber, the source between the two detectors. A low pressure is created inside the chamber using isobutane ( C 4 H 10) and a high voltage is applied to the electrodes. The detectors are first operated at different pressures and voltages to find the optimum values of the pressure and the voltage. This is necessary to avoid the sparking threshold, to achieve a good time resolution and to keep the gain of the detectors high and constant. The PPACs are operated in 2π- and 4π-geometries. In 4π-geometry the detectors are allowed to function in coincidence and noncoincidence mode. The resulting pulse height and the time spectra are studied using the computer code ROOT and some conclusions are drawn from these analyses. The pulse height spectrum shows a clear separation between the fission fragments and the alpha particles and the time spectrum indicates a good intrinsic time resolution, 0.76 ns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.