Abstract
Abstract The paper analyses the possibility of using analytical methods of notch stress-strain correction in low-cycle fatigue life predictions of steam turbine rotors operating under non-isothermal conditions. The assessment was performed by comparing strain amplitudes calculated using the Neuber and Glinka-Molski methods and those predicted by the finite element analysis (FEA) employing elastic-plastic material model. The results of investigations reveal that the Neuber method provides an upper bound limit, while the Glinka-Molski method results in a lower bound limit of strain amplitude. In the case of rotor heat grooves, both methods provide equally accurate results of notch strain amplitude and are suited to estimating lower and upper bound limits of low-cycle fatigue life under non-isothermal conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.