Abstract

Artemisia absinthium leaves were utilized as a reducing agent for green synthesis of Zinc oxide nanoparticles (particle size 17 nm). Synthesized green-ZnO (g-ZnO) were characterized by SEM/EDX, FTIR, XRD, UV, and BET analyses and then further used as an adsorbent to remove Cr(VI) ions from simulated wastewater. Optimal pH, temperature and adsorbent dosage were determined through batch mode studies. High removal efficiency and adsorption capacity were observed at pH 4, 0.25 g L−1 dosage, and 25 mg L−1 concentration of Cr(VI). Experimental data were modelled with different adsorption kinetics (Elovich model, PFO, PSO, IDP model) and isotherms (Langmuir, Freundlich, and Temkin), and it was found the adsorption process was well fitted to Langmuir with an R2 value greater than>0.99. Computational calculation showed that the g-ZnO nanoparticles became ∼14 times more dynamic with delocalized surface states making them a relevant platform to adsorb Cr with greater work function compatibility supporting the experimental findings. The Qmax adsorption capacity of g-ZnO was 315.46 mg g−1 from Langmuir calculations. Thermodynamic calculations reveal that the Cr (VI) adsorption process was spontaneous and endothermic, with a positive ΔS value representing the disorder at the solid-solution interface during the adsorption. In addition, the present study has demonstrated that these g-ZnO nanoparticles show strong antibacterial activities against P. aeruginosa (MTCC 1688) and E. coli (MTCC 1687). Also, the novel g-ZnO adsorbent capacity to remove Cr(VI) from simulated water revealed that it could be reused at least six times with higher removal rates during regeneration experiments. The results obtained from adsorption and antimicrobial activities suggest that g-ZnO nanoparticles could be used effectively in real-time wastewater and agricultural safety applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.