Abstract

Metal Oxide Semiconductor (MOS) capacitor devices comprised of monolayer iron oxide-coated as well as non-coated polycrystalline Pt deposited on oxidized silicon carbide substrates have been fabricated and their usefulness as realistic model systems in catalyst studies/development was evaluated. The CO oxidation characteristics of both iron oxide- and non-coated Pt catalysts were investigated using mass spectrometry, monitoring the carbon dioxide production rate for different combinations of carbon monoxide (CO) and oxygen concentrations at various temperatures. Additionally, the output capacitance of the MOS model catalysts was recorded for each individual CO oxidation activity. A low-temperature shift in CO oxidation characteristics for the monolayer-coated compared to the non-coated Pt catalysts was observed, similar to that previously reported for monolayer iron oxide grown on single-crystalline Pt substrates. A strong correlation between the output capacitance of the MOS structures and the CO oxidation characteristics was found for both monolayer- and non-coated model catalysts. Furthermore, the devices exhibit retained MOS electrical output and CO oxidation characteristics as well as an unaffected catalyst surface composition, as confirmed by photoelectron spectroscopy, even after 200h of continuous model catalyst operation. In addition to the implications on practical applicability of monolayer iron oxide coating on widely used polycrystalline Pt films in real-world catalysts and sensors, the findings also point to new possibilities regarding the use of MOS model systems for in situ characterization, high-throughput screening, and tailoring of e.g. catalyst- and fuel-cell-electrode materials for specific applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.