Abstract
This research utilized machine learning to analyze experiments conducted in an open channel laboratory setting to predict microplastic transport with varying discharge, velocity, water depth, vegetation pattern, and microplastic density. Four machine learning (ML) models, incorporating Random Forest (RF), Decision Tree (DT), Extreme Gradient Boost (XGB) and K-Nearest Neighbor (KNN) algorithms, were developed and compared with the Linear Regression (LR) statistical model, using 75% of the data for training and 25% for validation. The predictions of ML algorithms were more accurate than the LR, while XGB and RF provided the best predictions. To explain the ML results, Explainable artificial intelligence (XAI) was employed by using Shapley Additive Explanations (SHAP) to predict the global behavior of variables. RF was the most reliable model, with a coefficient of correlation of 0.97 and a mean absolute percentage error of 1.8% after hyperparameter tuning. Results indicated that discharge, velocity, water depth, and vegetation all influenced microplastic transport. Discharge and vegetation enhanced and reduced microplastic transport, respectively, and showed a response to different vegetation patterns. A strong linear positive correlation (R2 = 0.8) was noted between microplastic density and retention. In the absence of dedicated microplastic transport analytical models and infeasibility of using classical sediment transport models in predicting microplastic transport, ML proved to be helpful. Moreover, the use of XAI will reduce the black-box nature of ML models with effective interpretation enhancing the trust of domain experts in ML predictions. The developed model offers a promising tool for real-world open channel predictions, informing effective management strategies to mitigate microplastic pollution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.