Abstract

The correlation of in vitro inhibition of cathepsin K (CatK) activity and in vivo suppression of collagen I biomarkers was examined with three selective CatK inhibitors to explore the potential translatability from animal species to human. These inhibitors exhibited good in vitro potencies toward recombinant CatK enzymes across species, with IC50 values ranging from 0.20 to 6.1nM. In vivo studies were conducted in animal species following multiple-day dosing of the CatK inhibitors to achieve steady-state plasma drug concentration-time profiles. Measurement of urinary bone resorption biomarkers (cross-linked N-terminal telopeptide and helical peptide of type I collagen) revealed drug concentration-dependent suppression of biomarkers, with EC50 values estimated to be 12 to 160nM. Marked improvement in the correlation between in vitro and in vivo CatK activities was observed with the application of unbound (free) fraction in plasma, consistent with the conditions stipulated by the free-drug hypothesis. These results indicate that the in vitro-in vivo translation of CatK inhibition observed in animal species can translate to humans when the unbound fraction of the inhibitor is considered. Interestingly, residual levels of urinary bone resorption marker were detected as the suppression reached saturation (at an average of 82% inhibition), an apparent phenomenon observed regardless of the species, biomarker, or compound examined. Since cathepsin enzymes other than CatK were reported to catalyze cleavage of collagen I, it is hypothesized that CatK-mediated degradation of collagen I in bone represents ~82% of overall collagen I turnover in the body.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.