Abstract

Geographically distributed simulations (GDS) overcome the inherent limitations in capabilities of single research infrastructure to accurately represent large-scale complex power and energy systems within representative operating environments in real-time. The feasibility of GDS has been proven, however, there is a lack of confidence in its adoption owing to limited evidence of its stability and accuracy that ascertain its practical applicability. This paper presents detailed small signal stability models for GDS setups with two interface signals transformations. The models have been validated by empirical analysis and used for determining the boundaries for stable operation of GDS setups. For the common region of stability of the two transformations considered, accuracy analysis presented offers insights for their selection. This advancement, thereby, enables realisation of experimental setups that can cater for the growing need to design and validate operational schemes that ensure robust and resilient operation of critical national infrastructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.