Abstract

Applicability of self-consistent-charge density-functional tight-binding method with dispersion correction (SCC-DFTB-D) was tested to the graphene adsorption of medium-sized molecules. We computed adsorbed structures of transition-metal complexes of porphyrin and porphycene on graphene, and evaluated the adsorption energies. The energies reasonably corresponded to the reference values evaluated by density functional theory (DFT) calculations. Furthermore, we confirmed the model size dependence of energy less than 1 kcal mol−1 by expanding the graphene size. SCC-DFTB-D can be an alternative choice for the computation of graphene adsorption of large molecules that are out of scope for typical DFT in terms of the computational cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.