Abstract

In the present study, the sound transmission loss (STL) of ultrafine glass fiber felts in terms of areal density and sound frequency has been modeled by artificial neural network (ANN), the Law of Theoretic Mass and fitting polynomial, respectively. The STL of ultrafine glass fiber felts with the areal density ranging from 0 to 300 g/m2 and at the sound frequency ranging from 500 to 6300 Hz was employed as training data for ANN. By the optimization of ANN structure, the number of neurons in the two hidden layers was determined to 8 and 4 respectively. The mean squared error of the ANN model was only 0.191 and the correlation coefficient was 0.9989, which showed high accuracy for estimating the STL of the felts. Compared with other two models, the ANN model showed excellent agreement with the measured results and it's very appropriate for the estimation of acoustic properties of ultrafine glass fiber felts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.