Abstract

AbstractWe investigated the applicability of an ionic liquid electrolyte to a phosphorus‐doped Si (P‐doped Si) electrode to improve the performance and safety of the lithium‐ion battery. The electrode exhibited excellent cycling performance with a discharge capacity of 1000 mA h g−1 over 1400 cycles in the ionic liquid electrolyte, whereas the capacity decayed at the 170th cycle in the organic electrolyte. The lithiation/delithiation reaction of P‐doped Si occurred a localized region in the organic electrolyte, which generated a high stress and large strain. The strain accumulated under repeated charge‐discharge cycling, leading to severe electrode disintegration. In contrast, the reaction of P‐doped Si proceeded uniformly in the ionic liquid electrolyte, which suppressed the electrode disintegration. The P‐doped Si electrode also showed good rate performance in the ionic liquid electrolyte; a discharge capacity of 1000 mA h g−1 was retained at 10 C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call