Abstract
Acidic soils can induce several negative impacts, especially in agricultural fields. To address these problems, lime is often applied to increase the pH value of acidic soils. Calcium carbonate is the most common and conventional agricultural lime; however, it is a natural and scarce resource. To promote a recycling-based society, alternative neutralizers with lower costs that use alkaline waste and by-products are essential. Therefore, we investigated the effectiveness and applicability of three types of autoclaved lightweight aerated concrete, recycled concrete, steel slag as basic oxygen furnace slag, and fly ash (mainly particles less than 0.106 mm and 0.106–2 mm in size), as alternative neutralizers for three representative acidic soils through laboratory neutralization experiments. The neutralization performance was evaluated by measuring the additive weight percentage of each neutralizer required to convert each acidic soil to neutral soil (pH 7). For neutralizers with two particle sizes, the finer fraction clearly showed lower additive weight percentages indicating higher neutralization performance. Among the six tested alkaline waste and by-products, the steel slag exhibited the highest neutralization performance. In particular, finer fraction steel slag exhibited a high neutralization performance, similar to that of the conventionally used calcium carbonate. This result suggests that fine steel slag (particle size < 0.106 mm) is the most promising and suitable alternative neutralizer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.