Abstract

An airlift draft-tube fluidized bioreactor has been designed and tested for applications in protein bioseparation. Operating parameters and geometrical dimensions of the bioreactor were optimized to ensure fluid circulation in a defined cyclic pattern between the riser and the downcomer. The overall directionality of liquid flow generates homogeneous field of low shear and achieves good mixing efficiency. Bioseparation of proteins was achieved from solutions containing both BSA and BHb at different initial concentrations and at pH 7. Similar adsorption capacities of both proteins were observed in single protein adsorption experiments at pH 7. Compressibility of BHb allowed for high adsorption capacity, in addition to the hydrophobic interaction forces. Apparently the homogeneous and lower shear generated by the airlift bioreactor reduces the compressibility of adsorbed BHb. This allowed for higher BSA adsorption from solutions containing BSA and BHb mixtures. Conventional batch adsorption experiments showed more adsorption of BHb, which reduces bioseparation efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call