Abstract

Three-dimensional (3D) laser technology has been tested for assessing the performance of air-assisted spraying. A static test using an air-assisted sprayer equipped with two axial fans (front and back) with opposing directions of rotation was developed. The sprayer was adjusted to spread water in a static mode, at a pressure of 10 bars, with four air volumetric flow rates. Measurements were performed using a Leica HDS6000 3D laser scanner. In addition, the flow and velocity of air generated by the air-assisted sprayer were measured using a hot-wire anemometer and a 3D sonic anemometer with the objective of estimating the influence of air flow on the spatial distribution of spray droplets. To carry out the analysis, all of the droplets detected by the laser were considered to be of the same size. The distribution of products was asymmetric when the machine only worked with the back fan, with 41% of the product distributed on the left side versus 59% on the right side, as referenced to the direction of the machine’s advance. This asymmetry was corrected when the machine functioned with the two fans activated. These spray data were concordant with the measured air flow generated by the machine in the different working conditions. For the different regulation settings of the machine, taking the vertical of the machine as 0°, the angular region comprised between 40° and 60° was the one that received the highest quantity of product. The increase of the air flow produced a greater distance of the product. For the highest air flow configuration, 99% of the product detected by the laser was detected within a distance of 16 m from the axis of the machine.

Highlights

  • Air-assisted sprayers used in fruit production must be carefully and effectively regulated to ensure that crops are successfully treated

  • Experimental methods are required to validate such simulations and to determine two critical physical features: first, the deposition of the product as a function of distance, which is related to the spray drift, and second, the product distribution in the vicinity of the machine, which must be in accordance with the position and geometry of the tree to be treated

  • The present study is aimed at analyzing the viability of using three-dimensional (3D) laser scanner technology to assess the effectiveness of an air-assisted sprayer used in fruit orchards in terms of the two aforementioned critical criteria: the deposition of the product as a function of distance and the product distribution in the vicinity of the machine

Read more

Summary

Introduction

Air-assisted sprayers used in fruit production must be carefully and effectively regulated to ensure that crops are successfully treated. The distribution of the spray in the vicinity of the sprayer is often estimated by measuring the air flow generated by the fans.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call