Abstract
Landslides occur frequently in the western mountainous areas of China, causing huge losses every year. InSAR technology can efficiently and accurately identify potential landslides and is a powerful tool for landslide hazards mitigation. However, the successful application of InSAR technology is limited by several factors, such as geometric distortion and dense vegetation, especially in area with alpine-canyon terrain. This study investigates the applicability of InSAR observations in identifying potential landslide of the middle section of Yalong River, which is a typical alpine-canyon terrain area. Using time-series InSAR Sentinel-1 datasets, we detect six potential landslides, which are verified and analyzed by using optical remote sensing images. Then the applicability analysis is performed considering geometric distortion and band suitability. The results reveal that combining ascending and descending data can increase the detectable area (not in the geometric distortion) from 70% to 92.9%. The comparison of the performance of C-band and L-band data in identifying potential landslide shows that the latter is able to detect potential landslides with high vegetation coverage, but it may miss the area with slight displacement. This study demonstrates the use of InSAR for potential landslide identification in alpine-canyon terrain area and reveals its applicability, which provides a deep understanding on SAR data selection and would play an important role for the InSAR-based landslides geohazard mitigation application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.