Abstract

Ring rot is a destructive apple disease caused by Botryosphaeria dothidea. The resistance mechanism of apple plants to B. dothidea remains unclear. Here, we show that APPLE VACUOLAR PROCESSING ENZYME 4 (MdVPE4) is involved in resistance to B. dothidea. MdVPE4 silencing reduced fruit disease resistance, whereas its overexpression improved resistance. Gene expression analysis revealed that MdVPE4 influenced the expression of fruit disease resistance-related genes, such as APPLE POLYGALACTURONASE 1 (MdPG1), APPLE POLYGALACTURONASE INHIBITOR PROTEIN 1 (MdPGIP1), APPLE ENDOCHITINASE 1 (MdCHI1), and APPLE THAUMATIN-LIKE PROTEIN 1 (MdTHA1). The expression of the four genes responding to B. dothidea infection decreased in MdVPE4-silenced fruits. Further analysis demonstrated that B. dothidea infection induced MdVPE4 expression and enzyme activation in apple fruits. Moreover, MdVPE4 activity was modulated by apple cysteine proteinase inhibitor 1 (MdCPI1), which also contributed to resistance towards B. dothidea, as revealed by gene overexpression and silencing analysis. MdCPI1 interacted with MdVPE4 and inhibited its activity. However, MdCPI1 expression was decreased by B. dothidea infection. Taken together, our findings indicate that the interaction between MdVPE4 and MdCPI1 plays an important role in modulating fruit disease resistance to B. dothidea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call