Abstract

Several lines of evidence suggest different allocations of the physiological roles of aminopropyl transferase genes, SPMS and ACL5 in plants. To get deeper insights into the physiological role of apple ACL5 (MdACL5), we performed yeast two-hybrid (Y2H) assay to identify proteins which interact with MdACL5. After intense screening processes, including the swapping of the bait and prey vectors and in vitro coimmunoprecipitation, we identified three MdACL5-interacting proteins: putative translation elongation factor 1A (eEF-1A), putative S-adenosyl-l-methionine synthetase (SAMS) and an unknown protein. Results from Y2H and RNA gel blot analysis suggested the involvement of MdACL5 and eEF-1A or SAMS complexes in the plant growth and development of the organized tissues and/or organs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.