Abstract

Information reconciliation (IR), which corrects the errors in the sifted keys, directly determines the secure key rate and the link distance of quantum key distribution (QKD) systems. In this paper, we propose an appending information reconciliation (AIR) scheme based on polar codes, which achieves high efficiency and ultralow failure probability simultaneously, by gradually disclosing the bit values of the polarized channels with high error probability. The experimental results show that the efficiency of the proposed AIR scheme is closer to the Shannon limit, compared with the state-of-the-art implemented polar-code-based IR schemes, with the overall failure probability around ${10}^{\ensuremath{-}8}$, especially when performed with smaller block sizes. Moreover, the efficiency of the proposed AIR scheme is 1.046, when the block size is 1 Gb and the quantum bit error rate of 0.02. Therefore, the proposed AIR scheme can further eradicate the performance gap between theory and implementation for QKD systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.