Abstract

Three aspects of the appendicularian O. dioica' s ecophysiology were measured here: 1) morphological parameters over a wide range of appendicularian sizes, including mature animals in order to document the morphological characteristics inducing reproduction; 2) clearance rate and assimilation efficiency using feeding incubations with different algal concentrations and 3) the effect of food concentration on growth, mortality and reproduction. The relationship between the body carbon weight and the clearance rate follows a power function, with an exponent of 0.91 (± 0.07). The rate of particles retention increases with the food concentration following a Michaelis–Menten relationship (half-saturation constant = 151 ± 22 µg C l − 1 , maximum clearance rate = 12 ± 1 µg C µg C − 1 d − 1 ). The carbon assimilation efficiency decreases with the increasing food concentration. As a result, appendicularian growth which is limited in concentrations lower than 50 µg C l − 1 is saturated above 100 µg C l − 1 . In immature animals the gonad represents less than 30% of the body volume whereas in mature individuals, its volume varies between 50% and 87% (mean 63%) suggesting that gonad/total volume ratio can be used as indicator of the maturation stages. The gonad weight in mature animals represents 70.3 (± 4.6)% of the total body carbon weight. Two major maturity stages can explain the changes in energy allocation: i) the somatic growth, when less energy is invested in gonad growth when compared to the rest of the body and ii) the maturation phase where most of the assimilated matter is invested in gonad maturation. This process is rapid, lasting only few hours. For this reason we measured completely mature organisms that are generally not measured during the experimental work with appendicularians. In food-limited conditions, the gonad maturation process starts with smaller individuals and ends with smaller reproductive animals having the same gonad to total volume ratio than in unlimited food conditions. The results obtained in this study were used to model the life cycle of O. dioica (see Lombard, F., Sciandra, A. and Gorsky, G., 2009-this volume. Appendicularian ecophysiology. II. Modeling nutrition, metabolism, growth and reproduction of the appendicularian Oikopleura dioica.).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.