Abstract

The study aimed to evaluate the body composition of patients with mitochondrial diseases (MD) and correlate it with disease severity. Overall, 89 patients (age ≥ 18 years) with MD were recruited, including 49 with chronic progressive external ophthalmoplegia (CPEO) and 40 with mitochondrial encephalomyopathy with lactate acidosis and stroke-like episodes (MELAS). Body composition, including fat mass index (FMI), fat-free mass index (FFMI), skeletal muscle mass index (SMI), and appendicular skeletal muscle mass index (ASMI), were examined using multifrequency bioelectric impedance analysis. Clinical assessments, including muscle strength, usual gait speed, and disease severity determined by the Newcastle Mitochondrial Disease Adult Scale score (NMDAS), were performed. The comparisons between patients group and age- and gender-matched healthy controls, as well as the correlations between anthropometric measurements, body composition, and disease severity were analyzed. Height, weight, body mass index (BMI), FFMI, SMI, and ASMI were significantly lower in patients with MD than in healthy controls. Notably, low muscle mass was noted in 69.7% (62/89) of MD patients, with 22 patients also presenting with compromised physical performance as indicated by decreased gait speed, resulting in 24.7% satisfied the sarcopenia diagnostic criteria. Disease severity was more negatively correlated with ASMI than it was with height, weight, and BMI. Subgroup analysis showed that in the MELAS subgroup, disease severity was negatively correlated with height, weight, and ASMI; whereas in the CPEO subgroup, it was only negatively correlated with ASMI and SMI. Additionally, ASMI was positively associated with muscle strength. Altogether, compared with BMI, ASMI is a more sensitive biomarker predicting disease severity of MD, both in MELAS and CPEO patients.

Highlights

  • Mitochondrial diseases (MD) are a group of clinically and genetically heterogeneous disorders caused by dysfunction of the mitochondrial respiratory chain either due to nuclear deoxyribonucleic acid (DNA) or mitochondrial DNA defects [1]

  • While most mitochondrial disorders manifest with different combinations of multiple system involvements, comprising distinct syndromes such as mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS), Kearns-Sayre syndrome (KSS), or myoclonic epilepsy with ragged red fibers (MERRF), some patients present with the predominant involvement of a single organ such as those with chronic progressive external ophthalmoplegia (CPEO) and isolated mitochondrial myopathy (MM) [2,3]

  • Gait speed < 0.8 m/s was noted in 32.6% (29/89) of MD patients and no significant difference with respect to gait speed was found between the patients with MELAS and those with CPEO

Read more

Summary

Introduction

Mitochondrial diseases (MD) are a group of clinically and genetically heterogeneous disorders caused by dysfunction of the mitochondrial respiratory chain either due to nuclear deoxyribonucleic acid (DNA) or mitochondrial DNA (mtDNA) defects [1]. The current biomarkers of MD include the Newcastle Mitochondrial Disease Adult Scale (NMDAS), circulating serum markers, imaging markers, and metabolomic markers [5,6]. Anthropometric measurements such as height, body weight, and body mass index (BMI) have been investigated as potential clinical biomarkers of both mtDNA mutations and nuclear gene mutations because short stature and underweight are common features in patients with these mutations [7,8,9]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call