Abstract
Schema matching is widely used in many applications, such as data integration, ontology merging, data warehouse and dataspaces. In this paper, we propose a novel matching technique that is based on the order of attributes appearing in the schema structure of query results. The appearance order embodies the extent of the importance of an attribute for the user examining the query results. The core idea of our approach is to collect statistics about the appearance order of attributes from the query logs, to find correspondences between attributes in the schemas to be matched. As a first step, we employ a matrix to structure the statistics around the appearance order of attributes. Then, two scoring functions are considered to measure the similarity of the collected statistics. Finally, a traditional algorithm is employed to find the mapping with the highest score. Furthermore, our approach can be seen as a complementary member to the family of the existing matchers, and can also be combined with them to obtain more accurate results. We validate our approach with an experimental study, the results of which demonstrate that our approach is effective, and has good performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.