Abstract

Abstract. When measuring boron (B) in tourmalines calibrated with schorl, no deviations in the peak intensities could be detected with a proven analysis protocol and using the Mo/B4C multilayer crystal LDEB. It is only when boron is detected in natural and experimental samples, some with significantly lower boron concentrations than in tourmalines, that irregularities in the analysis become visible. This phenomenon is known but has not been analytically investigated so far. Using four natural and artificial solids with boron concentrations from 0.035 wt %–3.14 wt % B, an apparent linear trend line was drawn. The intersect of that trend line with the y axis represents the detection limit of boron, which is of about 0.25 wt % B. The discrepancy between the apparent and the true value trend lines at boron concentrations of 0.25 wt %–2.1 wt % B shows that a correction is necessary. At higher boron concentrations, the discrepancy between the apparent and true value trend lines is within the uncertainty of electron microprobe analysis (EPMA) and disappears completely up to boron concentrations of about 3 wt %.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call