Abstract

By means of hybrid density functional theory, we present the evolution of the topological phase in rare earth monopnictide YAs with hydrostatic pressure and epitaxial strain. This material exists in NaCl-type structure at ambient conditions and shows structural phase transition into CsCl-type structure at 56.54 GPa hydrostatic pressure. The epitaxial strain reduces the structure into a compressed tetragonal-type. The thermodynamical and dynamical stability of the material is established with the calculation of enthalpy and phonon band structure within structural phase transition, respectively. The topologically trivial phase of the material is observed at ambient pressure in agreement with previous reports. This material shows topological phase transition at 24.8 GPa applied hydrostatic pressure and 10% epitaxial strain. The band inversion at the X-point between d-Y and p-As orbitals is verified with the help of the product of parity analysis of all the filled bands. The presence of the Dirac cone in the (001) plane and the existence of topologically non-trivial states at -point in the Fermi arc contour also established our claim. The Z2 indices are calculated with the help of the product of parities and a change in Z2 indices from (0;000) to (1;000) is also verified with the evolution of Wannier change centers under the conditions of applied hydrostatic pressure and epitaxial strain. The time reversal and inversion symmetries are preserved throughout the study and the topological phase transition at 24.8 GPa is much lower than the structural phase transition pressure i.e., 56.54 GPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.